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Abstract. Adaptive and transferable electron densities applicable as input in Harris density
functionals and first-principles inter-atomic potentials are constructed from calculations for the
atom in question embedded in a homogeneous electron gas. The density profile of each atom
depends explicitly on the average density in which the atom is located, which forms the basis
for the adaptivity. Harris functional results for Al and Ni atoms in numerous configurations are
compared to the corresponding self-consistent results. The new density construction is shown
to give systematically better results than superimposed fixed atom-like densities.

1. Introduction

Self-consistent (SC) total-energy calculations based on density functional theory (DFT) have
become extremely useful as tools for investigating the energetics and dynamics of solids [1–
3]. In principle, total energies of any system can be calculated with only atomic numbers as
input. In practice, the necessity of repeatedly solving the Schrödinger and Poisson equations
until self-consistency is achieved, involving many numbers to represent the electron density
and potential, set severe restrictions on the size of the systems amenable to study.

Alternative schemes for eliminating the time-consuming self-consistency cycle or for
simplifying descriptions of the density and potential are consequently of great importance.
Compared to the Hohenberg–Kohn–Sham (HKS) functional, the Harris (H) functional [4, 5]
is a DFT functional that does not require the construction and solution of Poisson’s equation
for the output density. It has been found to have a smaller error for deviations from
the ground-state density compared to the HKS functional [6, 7]. This property of the H
functional makes it ideal for use in SC as well as non-SC methods. The application of the
non-SC H functional requires a good, i.e. transferable and physically sound, input density
that can be used in different atomic environments.

The obvious first choice is that obtained by superimposing free-atom charge densities.
Applications have been made with this prescription on a variety of systems: molecules,
metals, semiconductors, and even ionic crystals [4, 8, 9]. It has been shown that
superimposed free-atom densities work well for properties of the perfect lattice but not
for defect structures, such as surfaces and vacancies [6, 7].

To improve on an atom-like density mainly two paths are possible: (i) a restricted
iterative search aiming at coming closer to the SC solution [10–13]; or (ii) a ‘one-shot’
calculation with some optimized input density [14, 15]. We follow the latter path in this
paper and test the applicability of embedding densities in the Harris functional. Such
optimized densities can also be utilized for tight-binding (TB) constructions [16].
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The above-mentioned surface problem has been addressed by several authors. Finnis [7]
resolved the problem by using a two-parameter variation of the input density to reproduce
the surface energy. Later Chettyet al [14] and Robertsonet al [15] constructed an optimized
density by fitting the density in reciprocal space to the points from SC calculations for both
surface and bulk configurations, exploiting the fact that the surface and bulk systems give
density contributions that are effectively separated in reciprocal space.

The present work provides a real-space method, treating each atom separately in a way
that allows adaptive atom-like densities. It accounts for the differences in surroundings
that each atom can experience (i.e. effective coordination) by using induced densities for
the atom considered embedded in homogeneous electron gases (jellia) at varying densities.
In this way one can obtain a renormalized-atom-like density that gradually changes as its
environment changes. Our construction is flexible enough to apply from bulk systems to free
atoms. The atom-in-jellium model is known to account well for trends of bulk properties,
such as inter-atomic distances, cohesive energies, and compressibilities [19, 20]. In bonding
systems, electronic screening causes a contraction of the atomic density tail. The embedding
provides a physical method for obtaining such a renormalized density.

An important aspect of the H functional is the fact that it provides a basis for first-
principles inter-atomic potentials of TB type [16, 17] and for schemes with a relaxed degree
of self-consistency [10–13, 18]. The H functional with a transferable density can thus
be viewed as the basic approximation behind glue schemes, such as the effective-medium
theory (EMT) [20] and the embedded-atom method (EAM) [21]. Our approach follows
the idea of the original implementation of the EMT by Jacobsenet al [20], in which
the parametrization of the atomic density explicitly depends on the average density of the
surrounding atoms at the atomic site. So far, however, the idea has not been tested in real
solid-state surroundings, using an accurate functional, such as the Harris functional, used in
this work.

We apply our input densities to a broad range of structures, including uncoordinated free
atoms, low-coordinated surfaces and high-coordinated bulk ones. Our density construction
is found to give H energy values closer to the SC results than what would be given with
a single atom-like density. We credit the systematically better agreement for total energies
and density distributions, in particular at low coordinations, to its adaptivity, accounting for
the density variations of the surrounding media. In fact, this approach comes very close to
the limit of accuracy possible with the H functional that can be obtained with superimposed
spherical densities. Robertsonet al [15] have reported this limit, set by the inability to
describe properties that ultimately depends on non-symmetric charge redistributions, to be
0.02–0.03 eV per atom for Al.

In the next section we discuss the Harris functional and some of its properties. The
method for obtaining the Harris input densities from embedding calculations is presented in
section 3. In section 4 we give total energies in the local density approximation (LDA) [22]
for the new densities, the density derived by Finnis and the SC results. Finally, in section 5
we draw conclusions and discuss further applications.

2. The Harris functional

In self-consistent DFT one solves the many-body electron problem by minimization of the
HKS total-energy functional [1, 22]:

EHKS[nout(r)] =
∑

i

f out
i εout

i −
∫

d3r nout(r)

(
8[nin(r)] − 1

2
8[nout(r)] + vxc[nout(r)]

)
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+ Exc[nout(r)] + Eion (1)

with well known terms: one-electron energy eigenvalues (εout
i ), Coulomb (8) and exchange–

correlation (vxc) potentials, exchange–correlation energy (Exc) and ionic energy (Eion). The
minimum is found by iterating the Kohn–Sham equations until self-consistency is achieved,
i.e. whennout equalsnin. For large systems this is very time consuming and one possibility
for decreasing the computational effort is to start with a good trial density (nin(r)) and
just take one step in the iteration. We will refer to this approach as the non-self-consistent
HKS functional (which will depend on the output density,nout(r), of the step). The HKS
functional is a variational upper bound to the SC energy.

The alternative functional proposed by Harris is quite similar [4, 5]. However, it does
not depend on the output density of the iterative step in the Kohn–Sham equations and
therefore there is need neither for construction of the output density nor for the solution of
Poisson’s equation. This is a great advantage to methods using atom-centred basis sets. We
may write it as

EH[nin(r)] =
∑

i

f out
i εout

i −
∫

d3r nin(r)

(
1

2
8[nin(r)] + vxc[nin(r)]

)
+ Exc[nin(r)] + Eion. (2)

The H and HKS functionals are of course identical whennin = nsc, but for deviations
of nin from nsc the two functionals behave differently. The error caused bynin 6= nsc is
in general larger for the HKS functional because there is a considerable ‘overshooting’ in
the output density resulting in mainly Coulomb energy errors [7]. Using a jellium model
combined with the Thomas–Fermi approximation for the density response function, the error
for a specific extended system has been found to be given by [6]

EHKS[nin] − E[nsc] = O[(nin − nsc)2/q4
0] + higher-order terms

EH[nin] − E[nsc] = −O[(nin − nsc)2/q2
0] + higher-order terms.

(3)

Here q0 is a characteristic reciprocal wavevector. Equation (3) implies that for both
functionals the Coulomb energy errors dominate for systems containing small wavevectors,
like surfaces, and this has been extensively reported [6, 7, 14, 15].

The results in equation (3) suggest that the H functional should have a maximum at the
SC density, but it has been shown that the extremum is either a local minimum or a saddle
point (in the LDA it is a saddle point) [23]. When the characteristic reciprocal wavevector
is below a certain critical value, the Coulomb energy dominates and the functional behaves
as if it has a local maximum [23]. For a general system, however, it is not possible to find
upper and lower bounds to the total energy by calculating HKS and H energies. In section 4
we find for the Al surface system saddle-point behaviour of the functional.

3. Construction of overlapping embedding densities

3.1. Atoms embedded in jellium

An atom embedded in a homogeneous electron gas (‘jellium’) is a model system for solids
that has appealed to many theorists over the years. In this approach one focuses on a single
atom and examines its interaction with a host of extended states.

Each atom of the collection that a solid consists of feels and responds to an environment.
The latter may be considered in some approximate way, particularly in simple metals because
of efficient electronic screening. Probably this line of thinking started with the study by
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Figure 1. The Al-induced embedding valence density (1n2.9 + n1atom) with the neutral radius
s = 2.9 and a fit (1n∗

2.9) using equation (A1). The empirical Finnis construction, quite alike
our embedding density, is included for comparison. The most pronounced effect, relative to
the case of the free pseudopotential atom, is the contraction of the density tail. It is seen that
the valence full-electron density is fairly close to that of the pseudopotential atom inside the
pseudo-core (which has a radius of about 2.5a0).

Figure 2. The Ni-induced embedding valence density (1n2.5 + n1atom) with the neutral radius
s = 2.5 and a fit (1n∗

2.5) using equation (A2). The pseudopotential atom density is included for
comparison. The inset shows the inner part of the densities. The pseudopotential core radius is
about 2a0.

Wigner and Seitz of the cohesion of alkali metals [24]. It then reappeared in such models
as cellular methods [25], spherical solids [26], the renormalized-atom model [27, 28], the
atom-in-jellium model [19], and the EMT [20].

A key quantity is the density distribution,n(r), of the immersed atom, calculated as a
function of the background density,n̄. The neutral-sphere radius,s, of an embedded atom
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Figure 3. The upper panel shows valence embedding densities (1ns ) for Al for several
embedding background densities, and fits with equation (A1) to these are shown in the lower
panel (1n∗

s ). The range of the fitted densities (used in the H calculations) is chosen to be
determined by the beginning of the Friedel oscillation. The figure also illustrates the dependence
of the density tail on the embedding background.

is simply related to this background density [20]. The induced density due to the atom is
defined by subtracting the background:

1ns(r) = ns(r) − n̄s .

Examples for Al and Ni calculated in the LDA are given in figures 1 and 2, respectively.
When using this density in the HKS and H functionals, we face two practical problems.

One is connected with the use of a pseudopotential total-energy program. Thefull-electron
density1ns(r) is therefore converted by adding the difference between the densities of the
free pseudopotential atom (pp atom) and the free full-electron atom,n1atom = npp atom−natom,
to the induced densities.

The other problem is due to the Friedel oscillations in the induced density. Mere use
of overlapping induced densities would give regions with negative total density, e.g. at
surfaces. To solve this problem the induced density is forced into a non-negative functional
form. We do this in two steps: first we fit a smooth positive function—see the appendix—
to 1ns(r) + n1atom and then we normalize the total charge with 1/(1 + (r/r0)

2), to obtain
our pseudopotential-induced density,1n∗

s (r), hereafter just called the induced density. The
procedure results in densities which are close to the original ones inside the neutrality
radius, where the embedding density generally should be close to the SC density of a
highly coordinated atom. The region outside the neutral radius is the critical part and the
results depend quite strongly on the chosen range of the density tail. We have chosen to
let the effective range of the renormalized atom be determined by the beginning of the
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Friedel oscillation where1ns(r) goes negative; see figure 1. In the limit of larges (low
coordination), the free atom is retained from1n∗

s (r).
Figure 3 shows densities with increasing neutral radii illustrating the transition from

compact bulk-like density to long-ranged free-atom density. Examination of the Al density
decomposed with respect to angular momentum shows s-to-p promotion and a contraction
of mainly p orbitals, which result in an increase and an outward push of the valence density
peak. Aluminium constitutes the test case for our proposed density construction and will
be discussed extensively in section 4.

The d electrons of Ni are to a large extent located inside the pseudopotential core radius
(see figure 2) and the validity of merely adding the difference between free-atom densities
is not obvious and we restrict this first study of Ni to just a single density. Comparison
of the atomic and induced densities shows a rearrangement from s to mainly d but also
p states. The d orbitals are contracted and the p states contribute to the outward push of
the valence peak. It is noteworthy that the induced density cannot be reproduced by just
rearranging the occupation of atomic orbitals.

No doubt our generation of induced densities can be made more straightforward, by
using either the pseudopotential in the embedding program or an all-electron total-energy
functional. However, this does not affect our key points.

Table 1. Radii of neutral spheres according to equation (4) for Al ions in the structures used
for calculations.

Neutral-sphere radii (a0) for

Structure bulk atoms surface atoms adatoms

fcc, a = 7.48 a0 2.9 — —
fcc, a = 7.75 a0 3.0 — —
111 adatom:
z = 3.59 a0 3.0 3.0 3.11
z = 3.76 a0 3.0 3.05 3.15
z = 4.04 a0 3.0 3.12 3.22
z = 4.37 a0 3.0 3.12 3.31
z = 5.05 a0 3.0 3.12 3.48
111 vacancy: 3.1 3.22 —
111 slab 3.0 3.09 —
100 slab 3.0 3.12 —
110 slab 3.0 3.16 —

3.2. Neutral spheres

As mentioned in the introduction, the induced density used as an input to the H functional
should be flexible enough to be used in different atomic environments, which we assume
can be described by an effective coordination number. The mechanism to account for this
effective coordination number is provided by allowing the induced density1n∗

s (r) to depend
on the background density of the electron gas in the embedding calculation and ons, the
neutral-sphere radius. This sphere, inside which the total charge of the nucleus and electrons
vanishes, varies in size with the environment. Just as in the EMT and effective-medium
tight-binding (EMTB) model [20, 16] the neutral radii of atoms in arbitrary structures are
calculated by integrating the induced densities of the atom itself and of its surrounding
neighbours. For a system of atoms this gives a set of non-linear equations, which are easily
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solved to a reasonable accuracy. For each atom this gives ans-value, and from that an
induced density,1n∗

s (r). Assigning radii in an fcc crystal with the SC equilibrium lattice
constant according to the above, we obtain for Als = 2.9a0 and for Ni s = 2.54a0,
corresponding tōn = 0.008 84a−3

0 and n̄ = 0.0115a−3
0 , respectively. The LDA lattice

constants are for Al 7.48a0 and for Ni 6.56a0, and to within 1% we have neutral radii
equal to the Wigner–Seitz radii.

In low-symmetry situations we have found reasons to modify the above original model.
The neutral radius of, e.g., a surface adatom is fairly large, and the corresponding induced
density placed at the ion position will have a long tail into the surface. We try to compensate
for this asymmetry by using an effective neutral radius for the assignment of the induced
density. We define this effective radius to be the average over the neutral radii for the atom
i and of its overlapping nearest neighbours with neutral radiisj :

sav
i =

(〈 ∑
j=n.n.

sj

〉
+ si

)/
2. (4)

Radii calculated according to equation (4) differ from the neutral radii in having very
asymmetric structures, like surfaces and surfaces with adatoms, but are essentially the same
in bulk systems. The new radii for our Al structures are presented in table 1.

Our input density to be used in H and HKS functionals is the superimposed sum

nin(r) =
∑
Ri

1n∗
sav
i
(r − Ri ) (5)

whereRi is the lattice positions of the ions.

4. Total-energy calculations for surfaces

In this section we test the construction of the density for various surface problems. In
all calculations we use an LDA pseudopotential plane-wave code (DACAPO [29] and
CASTEP [30, 31]), with norm-conserving pseudopotentials for Al and Ni [32, 33]. The cut-
offs for the plane-wave basis sets used for Al and Ni are 150 eV and 1000 eV, respectively.

Table 2 shows the results for Al, obtained using four different kinds of superimposed
input density: (i) the induced embedding density for the equilibrium fcc structure(a =
7.48a0), 1n2.9; (ii) a density1n∗

s that depends on the average density for the atom given
by equation (4); (iii) the free-atom density; and (iv) the Finnis construction optimized to
the Al(111) surface with lattice constant 7.6a0.

Properties of the perfect crystal, energy minimaE, the bulk modulusB and the
equilibrium lattice constanta, calculated with Murnaghan’s equation of state [34], are given
with high precision for all four input densities, as seen in in table 2. However, for distorted
bulk structures the overlapping-atom construction has been shown to do less well [9].

For the three low-index surfaces (111), (100) and (110) we have calculated the total
energy and the surface energy, defined asγ = 1

2(Eslab(n)− 1
2Ebulk(2n)), where the reference

bulk calculation has been made with the corresponding unit cell but with no vacuum layers.
The average errors in the H functional energy for the three surfaces are 0.02 and 0.04
eV/slab for the1n∗

s and the Finnis input densities, respectively. The result for the surface
energy is even closer to the SC result.

Table 3 shows the result for Ni, obtained using the induced embedding density1n∗
2.5

and the free-atom density. For1n∗
2.5 the average error for the three surfaces is 0.24 eV/slab.

Here the error in the fcc bulk energy for the1n∗
2.5 input density is relatively large, so the

resulting errors in the surface energy are below 0.1 eV/atom in all cases. This gives relative
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Table 2. Total energies in eV for Al structures with lattice constant 7.75a0. Energies for
induced embedding densities withs = 2.9 a0 and a mix ofs for both the Hohenberg–Kohn–
Sham (HKS) and Harris (H) functionals are shown as differences from the SC energies in the
third column. As a comparison, the same is shown for overlapping-pseudo-atom densities and
Finnis densities [7]. The bulk properties given are: equilibrium lattice constant (a), minimum
energy per atom (E) and bulk modulus (B).

Error in energy compared to SC result
Energy

Al structures nSC npp atom nFinnis 1n∗
2.9 1n∗

s
a

Free atom EHKS −52.80 0 + 0.04 + 0.10 0
EH — 0 + 0.02 + 0.03 0

111 slab (9 atoms) EHKS −510.33 + 5.64 + 0.03 + 0.06 + 0.09
EH — −1.35 −0.05 + 0.11 + 0.02

γ111 EHKS 0.44 + 0.94 0.00 + 0.01 + 0.03
EH — −0.20 + 0.01 + 0.02 0.00

Vacancy (9− 2 atoms) EHKS −395.49 + 4.69 + 0.04 + 0.09 + 0.72
EH —. −1.06 −0.03 + 0.15 0.00

Vacancy energy EHKS 57.42 −0.48 + 0.01 + 0.01 + 0.28
EH — + 0.15 + 0.01 + 0.02 + 0.01

Adatom (9+ 2 atoms):
z = 3.59 a0 EHKS −622.29 + 11.85 + 0.53 + 0.99 + 1.38

EH — −2.11 −0.07 + 0.14 −0.04
z = 3.76 a0 EHKS −622.42 + 13.97 + 0.44 + 0.88 + 1.13

EH — −2.10 −0.03 + 0.18 −0.01
z = 4.04 a0 EHKS −622.46 + 18.12 + 0.31 + 0.68 + 1.31

EH — −2.10 0.00 + 0.22 −0.02
z = 4.37 a0 EHKS −622.35 + 22.10 + 0.12 + 0.28 + 1.10

EH — −2.16 −0.03 + 0.22 −0.06
z = 5.05 a0 EHKS −621.72 + 27.05 + 0.77 + 0.43 + 0.43

EH — −2.83 −0.16 + 0.19 −0.05

100 slab (4 atoms) EHKS −226.90 + 2.83 + 0.14 + 0.25 + 0.42
EH — −0.50 −0.05 + 0.01 −0.04

γ100 EHKS 0.57 + 1.41 + 0.07 + 0.12 + 0.03
EH — −0.22 −0.02 0.00 + 0.01

110 slab (4 atoms) EHKS −226.32 2.64 + 0.05 + 0.12 + 0.06
EH — −0.72 −0.02 + 0.06 0.00

γ110 EHKS 0.84 1.32 + 0.02 + 0.06 + 0.20
EH — −0.33 + 0.01 + 0.03 −0.02

a (a0) HKS 7.48 7.48 7.48 7.48 7.48
H — 7.50 7.50 7.48 7.48

E (eV) HKS −57.05 −57.04 −57.04 −57.04 −57.04
H — −57.06 −57.05 −57.04 −57.04

B (GPa) HKS 92.0 86.6 86.4 86.2 86.3
H — 86.0 84.3 85.4 87.0

aSuperposed induced densities with neutral spheres according to table 1.

errors in the surface energy of less than 10 per cent. The bulk modulus values for both the
fcc and bcc phases are seen to be significantly better for1n∗

2.5 compared to the free-atom
construction.

As a more critical test of our density construction we calculate the energy curve for an
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Figure 4. Total energies (relative to the SC minimum) for the Al(111) slab with an adatom
at different distances from the surface. The plus signs (+) indicate the SC results, the circles
(◦) indicate Harris energies for1n∗

s2.9 and the diamonds (♦) indicate Harris energies when the
density for each atom has been chosen according to equation (4). The inset shows the total
energy for variation of the adatom density forz = 3.76a0, 4.37a0 and 5.05a0, respectively.
The diamonds are the same as in the main graph. The horizontal lines indicate corresponding SC
energies. The trend for the variation clearly shows the dependency on the effective coordination
(i.e. the neutral radius).

Figure 5. The error in the real-space density for the Al(111) slab. The difference between the
SC density and the free-atom density, and Finnis construction, and the induced densities chosen
according to equation (4), respectively, are shown for an extracted line. The line is perpendicular
to the surface and stretches from the middle of the slab, through the centre–centre site, and out
to the vacuum.

adatom on the Al(111) surface. Figure 4 shows the total energy for the adatom at different
distances from the surface, comparing the SC result with the H functional energies for1n∗

2.9
and for 1n∗

s . The agreement between the latter energies and the SC result is seen to be
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Table 3. Total energies in eV for Ni structures with lattice constant 6.65a0. Results for
overlapping-free-atom densities and embedding densities withs = 2.5 a0 with the Harris (H)
functional are given as energy differences from the SC energies. Calculated bulk properties for
Ni in the fcc and bcc structures, such as the equilibrium lattice constant (a), minimum energy
per atom (E) and bulk modulus (B), are also given.

Error in energy
compared to SC result

Energy
Ni Structures nSC npp atom 1n∗

s2.5

Bulk fcc (4 atoms) EH −3842.24 −0.07 −0.17

111 slab (3 atoms) EH −2879.95 −1.22 −0.12
γ111 EH 0.87 −0.58 0.00

100 slab (4 atoms) EH −3839.89 −1.89 −0.30
γ100 EH 1.17 −0.91 −0.07

110 slab (4 atoms) EH −3838.79 −2.56 −0.25
γ110 EH 1.72 −1.25 −0.04

Bulk fcc
a (a0) H 6.56 6.58 6.54
E (eV) H −960.58 −960.59 −960.62
B (GPa) H 249 218 256

Bulk bcc
a (a0) H 5.22 5.23 5.20
E (eV) H −960.50 −960.52 −960.54
B (GPa) H 235 197 242

very good.
The Al slab and adatom structures are expanded by 3.5% compared to the equilibrium

LDA bulk values in order to enhance the differences between the1n∗
2.9 and1n∗

s densities.
Table 2 shows that the Finnis construction gives better total energies compared to the1n∗

2.9
density. We believe the optimization of the Finnis density to a slightly (1.6%) expanded
lattice to be the reason for its better performance. Parenthetically, it can be mentioned
that when comparing (as in figure 5) superimposed Finnis and1n∗

2.9 densities one would
actually judge the latter one as being closer to the SC density. This suggests that the Finnis
procedure includes a significant optimization of error cancellations in the energy expression,
along with the density optimization.

The inset of figure 4 illustrates the variational properties of the H functional. The
density is varied by changing the value of the neutral-sphere radius for the adatom. Our
choice for the adatom density1n∗

s from equation (4) is seen to give results close to both the
SC result and to the maximum in the H functional. The trend for variation of the adatom
neutral sphere shows clearly the dependency on coordination, and thus supports our choice
of embedding density given in equation (4).

The general form for the variations in the energy shown in the inset is that of a
maximum. This is in agreement with equation (3) for a system dominated by the Coulomb
energy. This maximum is shifted slightly (by exchange–correlation energy) relative to the
SC result, giving the saddle-point behaviour expected for LDA in the general case, where
both Coulomb and exchange–correlation energies are important [23].
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Figure 6. The error in reciprocal-space density,n(G)/S(G), for the three smallest values of
the reciprocal wavevectors of the Al(111) slab with an adatom placed atz = 4.37a0. The lower
panel shows the difference between input and SC densities and the upper panel shows the same
for the output densities. The error in input density for1n∗

s is in general smaller, but the sign
of the errors changes for the two smallest wavevectors. This results in the large amplification
of these errors found innout.

For the clean Al(111) slab, figure 5 shows the error in the real-space density in a line
through the hollow site in a direction perpendicular to the surface, comparing our deviation
from the SC density with those for the Finnis and for the pseudo-atom input density. The
overall error for our construction is seen to be significantly smaller than for the Finnis
input density. This is especially true in the bulk region of the supercell. The picture for
the adatom is similar but more ‘messy’. Even though the input density in real space has
a overall smaller error, the HKS energy is not better for1n∗

s . In fact, the average HKS
error in table 2 is found to be bigger for this density. The error in the HKS functional is
dominated by the small wavevectorsG, as can be seen in equation (3).

In order to investigate this more closely, we show in figure 6 the density in reciprocal
space,n(G)/S(G), for the Al(111) slab with the adatom atz = 4.37a0 (S(G) is the
structure factor [35]). Only the three smallest wavevectors are shown for the input density
and output density generated by the HKS functional. The error in input density for1n∗ is
in general smaller, but the sign of the error changes for the two smallest wavevectors. This
results in the large amplification of these errors found innout. In real space this implies
large rearrangements of charge—so-called charge sloshing—which is a well known problem
for slab calculations [31]. The Harris functional effectively removes this problem.

5. Discussion

Spherically symmetric densities for Al and Ni to be used in the Harris functional have been
constructed with the physically transparent jellium model as a starting point. In agreement
with Chettyet al [14] we find them when used as an input to the H functional to give good
total-energy values for bulk and surface systems consisting of Al or Ni atoms.
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Further, a systematic improvement is introduced. Following the original implementation
of the effective-medium theory [20], we propose an efficient general density construction,
where the average coordination number for an atom adaptively determines the embedding
density used for the atom. This significantly increases the agreement between the resulting
H functional energy values and the SC result. It also gives a contraction of the atom-like
density that depends strongly on the average density for the atom and provides a physical
way to renormalize the density.

In agreement with previous work we find H functional energies to be more accurate
than the HKS ones. The error in the HKS energy is caused by the instability against density
variations with such small wavevectors as are present in our surface system. The resulting
charge sloshing is effectively eliminated with the H functional.

The variational properties of the H functional around the SC density constitute another
important aspect for the application of the functional. For our set of densities we have found
that the H functional exhibits essentially a maximum at the SC energy. Such a behaviour
is expected for a system dominated by the Coulomb energy. This maximum is slightly
shifted, giving a saddle-point behaviour, in agreement with the theoretical prediction, when
accounting also for the exchange–correlation effects [15].

The evaluations of the H functional in this paper have been made with plane-wave
programs. Several applications call for faster evaluations, however. Then it is interesting to
note that input densities like ours, Finnis’s and Chetty’s can be used to construct the electron
potential in a TB model [16]. Here the present method opens up particularly interesting
perspectives with adaptive TB basis functions, an issue currently under study.

In conclusion, it should be stressed that the density construction proposed in this
paper has virtues beyond earlier-published spherical-density superpositions. The increased
accuracy, in particular for open systems, and the potential for an adaptive TB basis have
been mentioned. In addition, it offers a description for alloys—something that is not possible
with the decomposition of the density in reciprocal space [14]. A direct generalization of
the jellium method to systems containing different kinds of atom is straightforward, and
could provide a useful tool for constructing model potentials for alloy systems.
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Appendix

For fits to Al embedding densities we have used

a + be−((r−c)/1.75)2

e5(r−rc) + 1
npp atom(r) (A1)

and the function for Ni is

a + br2(1 − ce−((r−d)/e)2
)

e6(r−rc) + 1
npp atom(r). (A2)

In both cases the pseudopotential atom density is exploited. The fit was made in the least-
squares sense fora, b, c, d, e andrc, with an r2-weight on the density.
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